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1. Introduction

One of the most exciting achievements in string theory is the remarkable success in counting

microscopic counting of black hole states, starting with the work of [1]. A particularly

elegant example of this is provided by considering an M5-brane wrapped on a complex

four-cycle of a Calabi-Yau [2]. This yields a black string in five dimensions which can be

further reduced to four dimensions by wrapping the string on S1 and including momentum

along the S1. A notable feature of this analysis is that, for a generic four-cycle, the M5-

brane has a smooth worldvolume and hence the only microscopic information needed is a

knowledge of the worldvolume fields and dynamics of a single M5-brane.

There have been several detailed accounts of the M5-brane wrapped on cycles of a

generic Calabi-Yau manifold, for example see [3 – 7], and also the M5-brane on K3 [8]. The

case that we are interested in here concerns an M5-brane whose worldvolume has non-trivial

one-cycles which occurs when the Calabi-Yau degenerates to K3× T 2 or T 6 (see also [7]).

This situation was discussed in [9] where several puzzles arose. In particular the number

of massless states was not found to be in accordance with (0, 4) supersymmetry and the

counting of black hole microstates failed (albeit at sub-leading order). To resolve these

problems the authors of [9] proposed a novel mechanism whereby some massless modes

are charged with respect to the worldvolume gauge fields that arise from reduction of the

two-form. The main purpose of this paper is to investigate this proposal. However we

find that the correct resolution comes from including additional massless modes which are

present when the Calabi-Yau is K3 × T 2 or T 6.

The rest of this paper is organized as follows. In section two we present the lowest

order equations of motion for an M5-brane which is wrapped on a smooth cycle P in

spacetime. In section three we consider in detail the case where spacetime is of the form

M = R1,4 ×K3 × T 2 and M = R1,4 × T 6. We provide a careful counting of the normal
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bundle moduli and resolve a puzzle concerning (0, 4) supersymmetry that was observed

in [9]. In section four we consider four-dimensional black hole states that arise by further

compactification on S1. We find that, using our analysis, the usual counting of left-moving

massless modes to determine black hole entropy does not agree with the supergravity

calculations or arguments using anomalies. To resolve this discrepancy we propose that

h1,0(P ) (4, 4) multiplets must become massive and hence do not appear in the low energy

effective action. This provides an alternative resolution to a second puzzle discussed in [9].

Finally section five contains a brief conclusion.

2. Lowest order equations of motion

Covariant equations of motion of the M5-brane were first derived in [10]. We will not need

give the full non-linear form of these equations, however it will be enlightening to give

the lowest order equations (in terms of a derivative expansion). We will work in static

gauge where the six coordinates xµ, µ, ν = 0, 1, 2, . . . , 5, of the M5-brane worldvolume are

identified with the first six coordinates of spacetime. The massless fields consist of 5 scalars

XA, A,B = 6, 7, 8, . . . , 10, a two-form Bµν and a Fermion ψ which satisfies Γ012345ψ = −ψ.

Here we use a full 32-component spinor of SO(1, 10). It will be sufficient to work at the

lowest order in the fields. XA represents the coordinates of the M5-brane in the transverse

space and in particular XA = 0 corresponds to the M5-brane wrapped on a calibrated

submanifold. We use M,N = 0, 1, 2, . . . , 10 to denote all eleven coordinates. We use an

underline to denote tangent space indices. We will use a hat to denote eleven-dimensional

quantities, the spacetime is denoted by M and the M5-brane worldvolume by W.

First recall the case where the worldvolume W admits a chiral Killing spinor ǫ; Dµǫ = 0,

Γ012345ǫ = ǫ. For example if M = R1,4 ×K3×T 2 and W = R1,1 ×K3. To lowest order in

fluctuations, the equations of motion are just that of a free theory on a curved background

D2XA = 0

iΓµDµψ = 0 (2.1)

Hµνλ =
1

3!
ǫµνλρστH

ρστ ,

where Hµνλ = 3∂[µBνλ] and ǫµνλρστ is totally antisymmetric with ǫ012345 = 1. These

equations are invariant under the supersymmetry transformations

δXA = iǭΓAψ

δBµν = iǭΓµνψ (2.2)

δψ = ∂µX
AΓµΓAǫ+

1

2 · 3!
ΓµνλHµνλǫ.

Next we consider the case where the spacetime M admits a chiral covariantly constant

spinor ǫ̂, D̂M ǫ̂ = 0, Γ012345 ǫ̂ = ǫ̂ but where this does not descend to a Killing spinor on W.

For example we can take M = R1,4 ×K3× T 2 but with W = R1,1 × Σ× T 2 where Σ is a

2-cycle in K3. We choose a vielbein frame such that, at least locally,

ê
N

M =

(

e
ν

µ 0

e
ν

A e
B

A

)

. (2.3)
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Therefore, in the static gauge that we are considering, the induced metric on the M5-

brane is simply gµν = ĝµν(XA = 0). We may further choose ω̂
νB

µ (XA = 0) = 0 and

ω̂
νλ

µ (XA = 0) = ω
νλ

µ , where ω
νλ

µ is the spin connection that one would calculate from

the vielbein e
ν

µ . Finally we also see that Γ̂µ = ê
ν

µ Γν = Γµ is the same γ-matrix that one

would calculate simply using the worldvolume metric gµν .

This allows us reinterpret the bulk Killing spinor condition on the worldvolume as

0 = D̂µǫ

= ∂µǫ+
1

4
ω̂ νλ

µ Γνλ +
1

4
ω̂ AB

µ ΓAB (2.4)

= Dµǫ+Aµǫ,

where ǫ = ǫ̂(XA = 0), ω
AB

µ = ω̂
AB

µ (XA = 0) and Aµ = 1
4ω

AB
µ ΓAB.

We find that, at lowest order in the fields XA, Bµν and ψ, the following symmetries

close on-shell into translations, gauge transformations and local tangent frame rotations

δXA = iǭΓAψ

δBµν = iǭΓµνψ (2.5)

δψ = ∇µX
AΓµΓAǫ+

1

2 · 3!
ΓµνλHµνλǫ,

where ∇µX
A = ∂µX

A + ω
A

µB XB . The Fermion equation of motion that is required to

close the algebra is

Γµ∇µψ = 0, (2.6)

where ∇µψ = Dµψ +Aµψ.

What are the remaining equations of motion? The B-field has a self-dual field strength

H = dB and hence one finds d ⋆ H = 0. This condition is preserved by the supersym-

metries (2.5). Taking a supersymmetry variation of the Fermion equation of motion (2.6)

leads the condition

0 = ΓA∇
2XAǫ+

1

2
ΓAΓµνF

A
µνB XBǫ, (2.7)

where

F
A

µνB = ∂µω
A

νB − ∂νω
A

µB + ω
C

µB ω
A

µC − ω
C

µB ω
A

µC

= R̂
A

µνB (XA = 0). (2.8)

To proceed we assume there is a relation of the form

1

2
ΓAΓµνF

A
µνB ǫ = M

A
BΓAǫ, (2.9)

in which case the equation of motion for XA, along with the other fields, is

∇2XA +M
A
BX

B = 0

iΓµ∇µψ = 0 (2.10)

Hµνλ =
1

3!
ǫµνλρστH

ρστ .
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We need to confirm that these equations are supersymmetric. To this end we note that

the Fermion equation of motion (2.6) implies

∇2ψ −
1

4
Rψ +

1

8
ΓµνF CD

µν ΓCDψ = 0. (2.11)

To connect with (2.7) we multiply this on the left by ǭΓA to find

ǭΓA∇2ψ −
1

4
RǭΓAψ +

1

8
ǭΓAΓµνF CD

µν ΓCDψ = 0. (2.12)

Next we note that since ω̂
νA

µ = 0 we have that R̂
λA

µν = 0 and therefore the Killing spinor

integrability condition [D̂µ, D̂ν ]ǫ = 1
4R̂

MN
µν ΓMNǫ = 0 implies

R
λρ

µν Γλρǫ = −F CD
µν ΓCDǫ, (2.13)

and hence

ǭR =
1

2
ǭΓCDΓµνF CD

µν . (2.14)

Using this we see that (2.12) implies

ǭΓA∇2ψ +
1

2
ǭΓBΓµνF

A
µνB XBψ = 0. (2.15)

The XA equation can be compared to (2.15) by noting that

δ∇2XA = iǭΓA∇2ψ, (2.16)

and one sees that the equations (2.10) are preserved by supersymmetry.

Let us consider for example the case where W is non-trivially embedded in eight

dimensions, so that only F
67

µν 6= 0. We see from (2.9) and (2.14) that the only non-

vanishing components of M
A
B are

M
6
6 = M

7
7 = R. (2.17)

Thus we find the scalar equations are

∇2X6 +RX6 = 0 ,

∇2X7 +RX7 = 0 , (2.18)

∇2XA = 0 , A = 8, 9, 10.

3. Counting moduli

In the previous section we determined the lowest order equation of motion for an M5-brane

wrapped on a general calibrated submanifold W of M. As a result we saw that the Fermions

and scalar fields couple minimally to the gauge field associated to the structure group of

the normal bundle and some scalars develop a mass term from the curvature. However the

three-form remains closed and self-dual (at the linearized level). In this section we wish to
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perform a precise counting of the massless degrees of freedom for an M5-brane wrapped on

a four-cycle P ⊂ M, i.e. W = R1,1 × P , in a spacetime of the form M = R1,4 × K where

K is some compact Calabi-Yau space that contains P . This has been discussed in great

detail in [2, 9] and we will largely follow their discussion.

The simplest field to consider is the dimensional reduction of the two-form gauge

field. As a consequence of the self-duality condition one finds b+2 (P ) right moving scalars

and b−2 (P ) left moving scalars. For the compact Kähler manifolds that we consider here

b+2 (P ) = 2h2,0(P ) + 1 and b−2 (P ) = h1,1(P )− 1. If h1,0(P ) is non-vanishing then there will

be 2h1,0(P ) Abelian gauge fields in the two-dimensional effective theory. However these

are non-dynamical we will not need them here.

Next we consider reduction of the scalars XA. In total there are five. Three of these,

X8,X9,X10 simply parameterize the location in the non-compact transverse space. These

always give 3 left and 3 right moving scalars in two dimensions. The remaining two scalars

are in fact sections of the normal bundle of P inside K. As such the number of such zero

modes is hard to calculate. Let us denote the number of normal bundle moduli by N(P,K).

These are left-right symmetric and we will discuss them in more detail shortly.

As for the Fermions it is well known (see [11]) that spinors on a Kähler manifold P

can be realized as (0, p)-forms on P . To see this one first consider complex coordinates

for P so that {Γa,Γb} = {Γā,Γb̄} = 0 and {Γa,Γb̄} = 2gab̄ with a, b = z,w. In particular

we consider a spinor ground state |0〉 which is annihilated by the holomorphic γ-matrices;

Γa|0〉 = 0. We can then construct a general spinor by

|ψ >= ω|0〉 + Γāωā|0〉 +
1

2
Γāb̄ωāb̄|0〉. (3.1)

By construction ωā1...āp
is totally anti-symmetric and hence represents a (0, p)-form on P .

Furthermore if we choose the complex γ-matrices Γz = Γ2 + iΓ4 and Γw = Γ3 + iΓ5 then

one sees that Γ2345|0〉 = |0〉 and more generally

Γ2345|ωp〉 = (−1)p|ωp〉, (3.2)

where |ωp〉 = 1
p!ωā1...āp

Γā1...āp |0〉. Since the Fermions on the M5-brane satisfy Γ012345ψ =

−ψ we see that |ωp〉 leads to right and left moving Fermions in two dimensions if p is even

or odd respectively.

To find massless two-dimensional modes we assume that |0〉 is Killing with respect to

∇ defined above. In this case one see that solutions to (Γa∇a + Γā∇ā)ψ = 0 correspond

to ∂̄[b̄ωā1...āp] = 0 and gbā1∂[bωā1...āp] = 0, i.e. ωp ∈ H(0,p)(P ). Thus one finds that number

of massless left and right moving two-dimensional Fermions is

NL
F = 4h1,0(P ), NR

F = 4(h0,0(P ) + h2,0(P )). (3.3)

Here the factor of 4 comes from the fact the spinor ‘groundstate’ |0〉 can be thought of as

having 32 real components but is subject to the three constraints: Γz|0〉 = Γw|0〉 = 0 and

Γ012345|0〉 = −|0〉. Thus |0〉 has four real independent components.
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Let us summarize our counting so far. We find

NL
B = 2 + h1,1(P ) +N(P,K)

NR
B = 4 + 2h2,0(P ) +N(P,K)

NL
F = 4h1,0(P ) (3.4)

NR
F = 4h2,0(P ) + 4,

where we have assumed that h0,0(P ) = 1. Since the wrapped M5-brane preserves (at least)

(0, 4) supersymmetry the right-movers must have Bose-Fermi degeneracy. This immedi-

ately allows us to determine the number of normal moduli to be

N(P,K) = 2h2,0(P ), (3.5)

and hence the massless spectrum is

NL
B = 2h2,0(P ) + h1,1(P ) + 2

NR
B = 4h2,0(P ) + 4

NL
F = 4h1,0(P ) (3.6)

NR
F = 4h2,0(P ) + 4.

Note that this also ensures that the number of right-moving modes is a multiple of 4, as

also required by (0, 4) supersymmetry. We would like to emphasis that this formula should

apply whenever it make sense to talk of a classical M-brane that is wrapped on a smooth

complex submanifold of any smooth Calabi-Yau (including K3 × T 2 and T 6).

This formula should be contrasted with the result

N(P,K) = 2h2,0(P ) − 2h1,0(P ), (3.7)

first obtained in [2] for an ample four-cycle P in a generic Calabi-Yau and extended to

K3 × T 3 and T 6 in [9]. We see that there is agreement for a generic Calabi-Yau where

h1,0(P ) = 0. However, as pointed out in [9], the formula (3.7) contradicts supersymmetry

when h1,0(P ) 6= 0. In the rest of this section we will argue that (3.5) is the correct counting

and identify the missing modes that are absent from (3.7).

We start with a brief review of the calculation in [2]. This starts from the observation

that a 4-cycle P ⊂ K is defined by the zeros of a section of a line bundle over K. The

Poincaré dual two-form to P , which we denote by [P ], determines the Chern class of the

line bundle. Thus counting the number of deformations of P corresponds to counting the

(real) dimension of the dimension of the space of line bundles. However one must take into

account the fact that if P is described by zeros of a section s then the zeros of λs describe

the same P for any λ ∈ C⋆. Thus one needs the real dimension of the projective space of

– 6 –
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line bundles. In this way one determines N(P,K) through

N(P,K) = 2dim(H0(K,L)) − 2

= 2
∑

i

(−1)idim(H i(P,L)) − 2

= 2

∫

K

e[P ]Td(K) − 2 (3.8)

=
1

3

∫

K

[P ]3 +
1

6

∫

K

[P ] ∧ c2(K) − 2.

Here the second line follows from the Kodaira vanishing theorem; H i(K,L) = ∅ for i > 0,

and the third line from a Riemann-Roch index formula. For an account of these theorems

see [12, 13]. Next one can use the formula (see [2, 9])

h2,0(P ) =
1

6

∫

K

[P ]3 +
1

12

∫

K

[P ] ∧ c2(K) + h1,0(P ) − 1, (3.9)

to obtain (3.7).

So what is missing from this calculation (3.8)? A central assumption of [2] is that P is

an ample cycle. Technically this means that the Poincaré dual two-form [P ] lies inside the

Kähler cone, i.e. it defines a positive volume for all complex 2-,4- and 6-cycles in K. More

intuitively an ample cycle P of a manifold K is one that is sufficiently generic so that the

set of all normal vectors to P spans the entire tangent space of K.

A key assumption of the Kodaira vanishing theorem is that the line bundle L is positive

and hence (3.8) counts the dimension of the space of positive line bundles. While every

ample four-cycle in K defines a positive line bundle there are zero modes which do not

correspond to positive line bundles. In particular consider translations of P along any of

the S1 factors in K. These S1 factors are trivial and describing the location of an M5-brane

in S1 simply corresponds to specifying a value of the coordinate for that S1. As such the

location is simply a section of a trivial U(1) line bundle over P and this extends to a trivial

U(1) bundle over K. These deformations are not counted in (3.7) since the associated line

bundle is trivial. There are 2h1,0(K) such translations and, using the Lefschetz hyperplane

theorem (valid for ample four-cycles), we have that h1,0(K) = h1,0(P ). Therefore we find

an extra 2h1,0(P ) normal modes that arise from translations along the S1 factors of K.

Including these modes in (3.8) gives (3.5).

An alternative description of these translational modes is to note that the S1 factors are

orbits of a U(1) Killing isometry that acts on K. An ample cycle breaks the symmetries

corresponding to translations along the S1 factors and hence there must be 2h1,0(K) =

2h1,0(P ) Goldstone modes. There are also smooth but non-ample four-cycles for which

h1,0(P ) 6= h1,0(K) and the index theorem does not apply. In these cases one also finds

that the cycle breaks fewer U(1) isometries and as a result has fewer Goldstone modes.

We will explicitly see in the examples below that nevertheless (3.5) is valid for all smooth

four-cycles, as required by supersymmetry.
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3.1 Three examples

To illustrate this discussion let us consider some explicit examples for K = K3 × T 2. We

will consider three choices for P : P = K3, P = Σ × T 2 and P = K3 + Σ× T 2, where Σ is

a two-cycle in K3. For a useful account of various facts about K3 see [14]. Following this

we will also discuss the case where K = T 6.

First we consider the case where P = K3 which was first studied in detail in [8]. The

Hodge diamond of K3 is

K3 :

1

0 0

1 20 1

0 0

1

. (3.10)

In this case it is clear that N(K3,K3 × T 2) = 2 since K is simply a direct product

K = K3 × T 2. Hence the normal bundle to P = K3 is trivial and there is no obstruction

to moving the K3 around inside K. Since the Killing spinor on K3 is chiral, reduction on

K3×T 2 leads to a two-dimensional theory with (0, 8) supersymmetry. Looking at the field

content we find the massless modes

NL
B = 24, NR

B = 8 , NL
F = 0, NR

F = 8, (3.11)

which is the same as the worldsheet action for the Heterotic string on T 3.

Next we consider the case where P = Σ × T 2. Let us suppose that Σ is ample in

K3. In complex dimension two the Lefschetz hyperplane theorem does not imply that

h1,0(Σ) = h1,0(K3) = 0 and hence h1,0(Σ) = g need not be zero. Assuming Σ is connected

the Hodge diamond of Σ × T 2 is

Σ × T 2 :

1

1 + g 1 + g

g 2 + 2g g

1 + g 1 + g

1

. (3.12)

To determine N(Σ × T 2,K3 × T 2) we note that N(Σ × T 2,K3 × T 2) = N(Σ,K3). Since

K3 does not have any S1 factors we may use a similar calculation as in (3.8), suitably

adapted to 2 complex dimensions. We find that

dim(H0(K3,L)) =
2

∑

i=0

(−1)idim(H i(K3,L))

=

∫

K3
e[Σ]Td(K3) (3.13)

=

∫

K3

1

12
c2(K3) +

1

2
[Σ]2

= 2 +
1

2

∫

K3
[Σ]2.
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Thus proceeding as before and taking account of the projective equivalence we find

N(Σ,K3) = 2(dim(H0(K3,L)) − 1) = 2 +

∫

K3
[Σ]2. (3.14)

Continuing we observe that [Σ] is the Poincare dual to Σ and hence we find

∫

K3
[Σ]2 =

∫

Σ
[Σ]

= −

∫

Σ
c1(L) (3.15)

= 2g − 2,

where in the second line we have used the adjunction formula to identify [Σ] = −c1(L) and

the last line follows from the well known formula for the Euler number of a two-dimensional

surface. Note that ample implies that g ≥ 2. Thus

N(Σ × T 2,K3 × T 2) = N(Σ,K3) = 2g. (3.16)

Putting this all together we see that the field content is

NL
B = 4 + 4g NR

B = 4 + 4g NL
F = 4 + 4g NR

F = 4 + 4g. (3.17)

Note that the spectrum is non-chiral which is a consequence of the fact that in this case

(4, 4) supersymmetry is preserved.

The previous two cases are not generic and in particular the cycle P is not ample

in K. In these cases the formula (3.7) does not necessarily apply and indeed it doesn’t

always agree with our results. However the formula (3.5) is valid and agrees with our

discussion. Our final case P = K3 + Σ × T 2 is generic in that P is ample. Therefore the

calculation (3.8) is valid. However since h1,0(P ) 6= 0 we will be able to test whether (3.7)

or (3.5) reproduces the correct number of normal modes. To see what these formulae give

us we need to compute h2,0(P ). From (3.9) we find

h2,0(P ) =
1

6

∫

K3×T 2

[P ]3 +
1

12

∫

K3×T 2

[P ] ∧ c2(K3 × T 2) + h1,0(P ) − 1. (3.18)

Writing [P ] = dvolT 2 + [Σ], where dvolT 2 is the unit volume form of T 2, we find

h2,0(P ) =
1

2

∫

K3
[Σ]2 +

1

12

∫

K3
c2(K3) + h1,0(P ) − 1

= g + h1,0(P ), (3.19)

where we have used (3.15) and χ(K3) = 24 in the second line. Thus since P is ample

h1,0(P ) = 1 and (3.7) predicts 2g + 2 normal modes and (3.7) only 2g normal modes.

However one expects that there are always two normal modes which come from translations

along T 2 and also that all of the normal modes which exist in the embedding of Σ in K3

should also exist here. This example therefore demonstrates that the formula (3.7) fails to

include the translational modes whereas (3.5) correctly accounts for all zero-modes.
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For completeness we note that [2, 9]

h1,1(P ) =
2

3

∫

K3×T 2

[P ]3 +
5

6

∫

K3×T 2

[P ] ∧ c2(K3 × T 2) + 2h1,0(P )

= 4g + 16 + 2h1,0(P ). (3.20)

Thus we find, from (3.6),

NL
B = 6g + 22, NR

B = 4g + 8 , NL
F = 4, NR

F = 4g + 8. (3.21)

Finally we can follow the above discussion and consider what happens to these three

cases when K3 is replaced by T 4, i.e. K = T 6. In the first case where P = T 4 the same

arguments give N(T 4, T 6) = 2 and hence

NL
B = 8, NR

B = 8 , NL
F = 8, NR

F = 8, (3.22)

which of course is just a straightforward reduction of the M5-brane on T 4 and has (8, 8)

supersymmetry.

In the second case all we need to do is replace c2(K3) = 24 by c2(T
4) = 0 in (3.13)

and we now find that the index theorem gives 2dim(H0(Σ, T 4)− 2 = 2g− 4 normal modes.

However we claim that, in addition to the modes counted by the index theorem, to obtain

the number of normal mode deformations of Σ inside T 4 we must also include 4 translational

Goldstone modes and hence N(Σ, T 4) = 2g. Thus we find N(Σ×T 2, T 6) = N(Σ, T 4) = 2g.

From (3.12) we find the total spectrum is

NL
B = 4g + 4, NR

B = 4g + 4 , NL
F = 4g + 4, NR

F = 4g + 4. (3.23)

Just as in the K3× T 2 case this spectrum is non-chiral as result of enhanced (4, 4) super-

symmetry.

In the third case where P = T 4 + Σ× T 2 the cycle is ample we have that h1,0(P ) = 3.

The calculations (3.19) and (3.20) give (replacing c2(K3) = 24 by c2(T
4) = 0 and setting

h1,0(P ) = 3)

h2,0(P ) = g + 1 h1,1(P ) = 4g + 2. (3.24)

Here we see that (3.7) gives N(P, T 6) = 2g − 4 and (3.5) gives N(P, T 6) = 2g + 2. The

difference is 6 and these are clearly the translational modes along T 6 which must exist for

a generic cycle which breaks all the translational symmetries. In total we find

NL
B = 6g + 6, NR

B = 4g + 8 , NL
F = 12, NR

F = 4g + 8, (3.25)

In all these cases one finds that N(P, T 6) = 2h2,0(P ) as predicted by (3.5). Let us

make a comment on the first two cases where the cycles are not ample. In these cases

the four-cycles preserve some of the symmetries of the torus and hence the total number

of translational Goldstone modes (equal to 2 or 4 respectively) is less than 2h1,0(K) = 6.

Nevertheless we still find that the total number of normal modes is 2h2,0(P ).
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4. Counting black holes

Following [2] we can obtain black hole solutions of four-dimensional extended supergravity

by further compactifying the remaining spatial direction of the wrapped M5-brane on S1. A

static wrapped M5-brane will be a magnetic source for the four-dimensional Abelian gauge

fields that arise from Kaluza-Klein reduction of the M-theory three-form. One may also

consider electric charges by including M2-branes. According to Beckenstein and Hawking

the entropy of a macroscopic black hole is given by one quarter if its horizon area. For the

solutions at hand one finds [2]

SBH = 2π

√

1

6
|q|χ(P ), (4.1)

where χ(P ) = 2 − 4h1,0(P ) + 2h2,0(P ) + h1,1(P ) is the Euler number of P . Here q is the

momentum carried by the M5-brane along S1, shifted by a contribution that arises from

the electric charges [2].

Following the work of [1] one obtains the microscopic black hole degeneracy by counting

all the modes of the low energy M5-brane theory which preserve the supersymmetries of

the vacuum. For an effective theory with (0, 4) supersymmetry this amounts to counting

the number of left moving modes with the right movers in their vacuum. From Cardy’s

theorem this is determined by the left-moving central charge and we find

S = 2π

√

1

6
|q|cL = 2π

√

1

6
|q|(χ(P ) + 6h1,0(P )), (4.2)

where we have used (3.6). For a generic Calabi-Yau, where h1,0(P ) = 0, we see that the

entropy is precisely reproduced by a microscopic counting of the degrees of freedom of the

M5-brane, including the electric charges which in the microscopic picture arise from shifts

of the vacuum energy [2]. However for K = K3 × T 2 or K = T 6 we find h1,0(P ) 6= 0 and

the two entropy calculations do not agree, as was pointed out in [9].

There is a further discrepancy. It is possible to compute the left and right central

charges of the superconformal (0, 4) fixed point of the M5-brane using gravitational and

R-symmetry anomalies [15, 16]. These arguments give cL = h2,0(P )+h1,1(P )+2−4h1,0(P )

and cR = 6(h2,0(P ) − h1,0(P ) + 1). This correctly accounts for the black hole entropy but

also differs from our counting by 6h1,0(P ) for both the left and right central charges.

We propose the following resolution. Our field content naturally splits into that of a

‘pure’ (0, 4) supersymmetric sector with

NL
B = 2h2,0(P ) + h1,1(P ) + 2 − 4h1,0(P )

NR
B = 4h2,0(P ) + 4 − 4h1,0(P )

NL
F = 0 (4.3)

NR
F = 4h2,0(P ) + 4 − 4h1,0(P ),

and h1,0(P ) (4, 4) multiplets with

NL
B = 4 NR

B = 4 NL
F = 4 NR

F = 4. (4.4)
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Note that we are not assuming that there is a left-moving supersymmetry which acts on

the (4, 4) multiplets, we are just using them as a counting device. The correct black hole

degeneracy and central charges are readily obtained if we only count the modes of the (0, 4)

sector. Furthermore both the black hole entropy and anomaly arguments only count the

degrees of freedom that are massless at the conformal fixed point. Since the extra states

that we find fall into non-chiral (4, 4) multiplets it is reasonable to conjecture that they

become massive and hence do not appear in spectrum of the conformal fixed.

We have not been able to provide any additional arguments to support this proposal.

However this claim is essentially a consequence of our counting along with the results

of [15, 16]. To state this another way we note that the quantum anomaly arguments

determine the central charges at the conformal fixed point and, combining this with our

counting (which is just a classical counting at lowest order), we deduce that h1,0(P ) (4, 4)

multiplets become massive at the IR fixed point.

We note that (4, 4) supersymmetry implies that the potential must arise as the length-

squared of a tri-holomorphic Killing vector on the moduli space [17]. When h1,0(P ) 6= 0 K

has U(1) isometries and these will induce Killing vectors on the moduli space. We expect

that, as a consequence of the geometrical action of R-symmetry, the moduli space Killing

vectors should be tri-holomorphic. Therefore they can in principle lead to the required

potential.

Let us make some comments on the mechanism that would provide such a mass. One

could object that the M5-brane moduli cannot become massive because the equations of

motion only involve derivatives of the fields. In particular, although in section 2 we only

gave the lowest order equations of motion, the full non-linear equations have been worked

out for a general embedding into supergravity and indeed these only involve derivatives

of the fields. These equations of motion were derived in [10] using the superembedding

formalism applied to the two derivative approximation to M-theory, i.e. standard eleven-

dimensional supergravity of [18]. Another approach to obtaining the M5-brane equations

of motion comes from an analysis of the Goldstone modes of the supergravity solution [19].

The M5-brane three-form H is identified with zero-modes arising from gauge transforma-

tions of the bulk three-form C. Again one would expect that, as Goldstone modes, the

equations of motion of the M5-brane fields would only involve derivatives, even if higher

derivative terms were added to eleven-dimensional supergravity.

However there is an important caveat. It is well-known that at next-to-leading order

the M-theory effective Lagrangian contains the anomaly C ∧ I8 term [20]. This leads to a

source for C and hence the also three-form H on the M5-brane worldvolume. Furthermore

it is precisely the C ∧ I8 term in the effective action which is needed for cancelation of

the anomalies and which ultimately leads to the correct prediction of the central charges

in [15, 16]. Thus one might suspect that this term induces a mass for the extra (4, 4)

multiplets that we have found.

We finish this section by noting that, in the examples above with P = Σ × T 2 and

(4, 4) supersymmetry, this mechanism removes all the massless modes. Thus the M5-brane

will behave as though it is wrapped on a rigid cycle even though the cycle has moduli.
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5. Conclusion

In this paper we have discussed in detail the low energy dynamics of an M5-brane wrapped

on a smooth but otherwise arbitrary, complex four-cycle in K3 × T 2 or T 6. In particular

we gave the lowest order equations of motion and determined the spectrum of massless

modes. This required a careful treatment of the zero-modes that arise from translations

along the S1 factors and leads to a spectrum in a agreement with supersymmetry. Finally

we discussed the counting of black hole microstates obtained by further reduction to four-

dimensions on another S1. The naive counting of massless modes does not reproduce the

correct entropy and is not in agreement with anomaly cancelation arguments. To resolve

this we proposed that h1,0(P ) (4, 4) multiplets become massive and are removed from the

low energy spectrum. It would be very interesting to study this mass mechanism in greater

detail and verify that it indeed at work here. In particular it would be interesting to

incorporate the effect of the C ∧ I8 term on the M5-brane equations of motion.

Acknowledgments

I am grateful to B. de Wit, T. Mohaupt, G. Moore and S. Trivedi for useful discussions.

This work is supported in part by the PPARC grant PP/C507145/1 and the EU grant

MRTN-CT-2004-512194.

References

[1] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys.

Lett. B 379 (1996) 99 [hep-th/9601029].

[2] J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12

(1997) 002 [hep-th/9711053].

[3] C. Vafa, Black holes and Calabi-Yau threefolds, Adv. Theor. Math. Phys. 2 (1998) 207

[hep-th/9711067].

[4] R. Minasian, G.W. Moore and D. Tsimpis, Calabi-Yau black holes and (0, 4) σ-models,

Commun. Math. Phys. 209 (2000) 325 [hep-th/9904217].

[5] N.D. Lambert and P.C. West, M-theory and two-dimensional effective dynamics, Nucl. Phys.

B 569 (2000) 661 [hep-th/9905029].

[6] R. Minasian and D. Tsimpis, M5-branes, special Lagrangian submanifolds and σ-models,

Adv. Theor. Math. Phys. 4 (2000) 377 [hep-th/9906190].

[7] G. Bonelli, The geometry of the M5-branes and TQFTs, J. Geom. Phys. 40 (2001) 13

[hep-th/0012075];

G. Bonelli, The M5-brane on K3and del Pezzo’s and multi-loop string amplitudes, JHEP 12

(2001) 022 [hep-th/0111126].

[8] S. Cherkis and J.H. Schwarz, Wrapping the M-theory five-brane on K3, Phys. Lett. B 403

(1997) 225 [hep-th/9703062].

– 13 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB379%2C99
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB379%2C99
http://arxiv.org/abs/hep-th/9601029
http://jhep.sissa.it/stdsearch?paper=12%281997%29002
http://jhep.sissa.it/stdsearch?paper=12%281997%29002
http://arxiv.org/abs/hep-th/9711053
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C207
http://arxiv.org/abs/hep-th/9711067
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C209%2C325
http://arxiv.org/abs/hep-th/9904217
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB569%2C661
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB569%2C661
http://arxiv.org/abs/hep-th/9905029
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C4%2C377
http://arxiv.org/abs/hep-th/9906190
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JGPHE%2C40%2C13
http://arxiv.org/abs/hep-th/0012075
http://jhep.sissa.it/stdsearch?paper=12%282001%29022
http://jhep.sissa.it/stdsearch?paper=12%282001%29022
http://arxiv.org/abs/hep-th/0111126
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB403%2C225
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB403%2C225
http://arxiv.org/abs/hep-th/9703062


J
H
E
P
0
2
(
2
0
0
8
)
0
6
0

[9] G. Lopes Cardoso, B. de Wit and T. Mohaupt, Macroscopic entropy formulae and

non-holomorphic corrections for supersymmetric black holes, Nucl. Phys. B 567 (2000) 87

[hep-th/9906094]; Area law corrections from state counting and supergravity, Class. and

Quant. Grav. 17 (2000) 1007 [hep-th/9910179].

[10] P.S. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997) 62 [hep-th/9611008];

P.S. Howe, E. Sezgin and P.C. West, Covariant field equations of the M-theory five-brane,

Phys. Lett. B 399 (1997) 49 [hep-th/9702008].

[11] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 2: loop amplitudes,

anomalies and phenomenology, Cambridge University Press, Cambridge U.K. (1987).

[12] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, Berlin Germany

(1978).

[13] P. Griffiths and J. Harris, Principles of algebraic topology, John Wiley and Sons, U.S.A.

(1978).

[14] P.S. Aspinwall, K3 surfaces and string duality, hep-th/9611137.

[15] J.A. Harvey, R. Minasian and G.W. Moore, Non-abelian tensor-multiplet anomalies, JHEP

09 (1998) 004 [hep-th/9808060].

[16] P. Kraus and F. Larsen, Microscopic black hole entropy in theories with higher derivatives,

JHEP 09 (2005) 034 [hep-th/0506176].
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